La inteligencia artificial y los diez retos del aprendizaje profundo

Pablo Rodríguez Canfranc
Economista

Robotescribiendo



Como anticipamos en un artículo anterior, en un reciente trabajo académico, el profesor Gary Marcus de la Universidad de Nueva York plantea el riesgo de que, después de este periodo de grandes expectativas que han vivido las redes neuronales en los últimos años, la inteligencia artificial entre en otro periodo invernal, como el que vivió en 1970, cuando después de haber generado grandes expectativas se consideró que era una tecnología demasiado frágil, estrecha y superficial para ser utilizada en la práctica fuera del marco experimental de los laboratorios.


Para Marcus no hay que desestimar completamente el aprendizaje profundo. Simplemente, no debe ser considerado como la solución universal y en cambio de ser contemplado como una herramienta estadística más, que debe ser utilizada junto a otras para lograr que el campo de la inteligencia artificial avance realmente.


Es por ello, que Gary Marcus postula diez retos a los que se enfrenta el aprendizaje profundo en la actualidad.


1. El deep learning actual es un devorador de datos


A diferencia del cerebro humano, los algoritmos basados en el aprendizaje profundo carecen de mecanismos para aprender términos abstractos a través de la mera definición verbal y necesitan ser entrenados con millones de ejemplos. Ante situaciones o problemas donde los datos no están disponibles en grandes cantidades, el aprendizaje profundo puede no resultar la mejor solución.


2. El deep learning actual es muy superficial y ofrece pocas oportunidades de transferencia


Para Marcus, los sistemas actuales no comprenden realmente los conceptos y han sido entrenados para actuar en determinados escenarios o situaciones. Cuando se llevan a cabo los denominados tests de transferencia en los que el algoritmo es confrontado con escenarios que difieren, aunque sea ligeramente, de aquellos en los que ha sido entrenado, las soluciones que ofrece resultan superficiales.


3. El deep learning actual no puede tratar de forma natural con una estructura jerárquica


Las correlaciones que establecen este tipo de sistemas entre distintos elementos son llanas y no jerárquicas, como en una lista en la que cada elemento está al mismo nivel que los demás. Cuando se enfrentan con una estructura jerárquica, como por ejemplo una frase subordinada a otra, estos algoritmos pueden aproximarse de forma inadecuada a su análisis.


Gary Marcus utiliza el ejemplo de una frase compleja. Los sistemas de reconocimiento del lenguaje basados en el aprendizaje profundo abordarán la frase como una secuencia de palabras. Sin embargo, en una frase como eladolescente que previamente atravesó el Atlántico estableció un record de vuelo alrededor del mundo, la cláusula principal sería el adolescente que estableció un record de vuelo alrededor del mundo, mientras que previamente atravesó el Atlántico estaría subordinada a la primera. Marcus duda que el sistema pueda reconocer esa jerarquía.


4. El deep learning actual choca con las inferencias abiertas


Los humanos cuando leemos un texto podemos inferir cosas de él que no están directamente referenciadas o solo lo están parcialmente. Por ejemplo, adivinar las intenciones de un personaje determinado a través de un diálogo en el que las muestra de forma indirecta. El aprendizaje profundo consigue desenvolverse con éxito en situaciones en las que la solución está contenida en un texto, pero empieza a tener problemas cuando esta no es tan explícita, bien porque se combinen muchas frases, bien porque las frases sean explícitas, pero que hagan alusión a un trasfondo que no aparece en el fragmento de texto.


5. El deep learning actual no es lo suficientemente transparente


Generalmente, se habla de la opacidad de las redes neuronales, haciendo referencia a que son sistemas que analizan millones de parámetros para tomar decisiones cuyo funcionamiento concreto queda fuera del conocimiento de sus creadores. Una red neuronal profunda se basa en miles de neuronas simuladas almacenadas en cientos de capas interconectadas. Es algo excesivamente más opaco e inaccesible que cualquier código de programación convencional.


6. El deep learning actual no ha sido debidamente integrado con el conocimiento previo


Marcus afirma que la principal aproximación al aprendizaje profundo es hermenéutica, es decir, autocontenida y aislada de cualquier conocimiento potencialmente útil. El proceso suele consistir en entrenar al sistema con una base de datos que asocia outputs o productos con los respectivos inputs, haciéndole aprender la relación entre ambos para solucionar un problema dado. Un conocimiento previo no suele ser introducido en el algoritmo.


Pone el ejemplo concreto de un sistema destinado a estudiar la física de las torres que se derrumban en el que no se han introducido previamente las leyes de Newton, aunque el algoritmo las acaba deduciendo más o menos a base al análisis de los millones de ejemplos que se le han introducido en su fase de entrenamiento.


7. El deep learning actual no es capaz de distinguir claramente causalidad y correlación


Aunque el aprendizaje profundo aprende a establecer relaciones entre los insumos que recibe de información y el output o producto, no se puede hablar de que entienda la relación de causalidad. Por ejemplo, un sistema podría encontrar la correlación entre la altura de una persona y la riqueza en el uso del lenguaje –cuanto más alto es un niño, mejor habla-, pero no puede entender la relación de causa entre el desarrollo y crecimiento del chaval y su riqueza lingüística.


8. El deep learning actual cree vivir en un mundo estable


El aprendizaje profundo funciona mejor en un mundo estable con reglas precisas, como por ejemplo, un juego de mesa, y no tan bien en entornos menos predecibles, como puede ser la evolución de los sistemas financieros.


9. El deep learning actual funciona bien como una aproximación, pero a veces sus soluciones no son fiables del todo


Por las razones expuestas anteriormente, el aprendizaje profundo funciona bien en determinadas situaciones, pero puede ser fácilmente engañado, por lo que hay que tratar con mucha cautela sus predicciones y dictámenes.


10. El deep learning actual es difícil de aplicar en la ingeniería


El autor apunta los riesgos de trabajar con el aprendizaje automático, pues considera que son sistemas que pueden funcionar en determinadas circunstancias, pero para los cuales es difícil garantizar que funcionarán en circunstancias alternativas con datos nuevos que pueden no parecerse a los que han sido utilizados en su entrenamiento. Esto impide que se pueda utilizar para desarrollar ingeniería robusta.

Sin comentarios

Escribe tu comentario




No está permitido verter comentarios contrarios a la ley o injuriantes. Nos reservamos el derecho a eliminar los comentarios que consideremos fuera de tema.


Más autores
Opinadores
Leer edición en: CATALÀ | ENGLISH